A Comparison of Different ROC Measures for Ordinal Regression
نویسندگان
چکیده
Ordinal regression learning has characteristics of both multi-class classification and metric regression because labels take ordered, discrete values. In applications of ordinal regression, the misclassification cost among the classes often differs and with different misclassification costs the common performance measures are not appropriate. Therefore we extend ROC analysis principles to ordinal regression. We derive an exact expression for the volume under the ROC surface (VUS) spanned by the true positive rates for each class and show its interpretation as the probability that a randomly drawn sequence with one object of each class is correctly ranked. Because the computation of V US has a huge time complexity, we also propose three approximations to this measure. Furthermore, the properties of VUS and its relationship with the approximations are analyzed by simulation. The results demonstrate that optimizing various measures will lead to different models.
منابع مشابه
ROC analysis in ordinal regression learning
Nowadays the area under the receiver operating characteristics (ROC) curve, which corresponds to the Wilcoxon–Mann–Whitney test statistic, is increasingly used as a performance measure for binary classification systems. In this article we present a natural generalization of this concept for more than two ordered categories, a setting known as ordinal regression. Our extension of the Wilcoxon–Ma...
متن کاملComparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملROC curve regression analysis: the use of ordinal regression models for diagnostic test assessment.
Diagnostic tests commonly are characterized by their true positive (sensitivity) and true negative (specificity) classification rates, which rely on a single decision threshold to classify a test result as positive. A more complete description of test accuracy is given by the receiver operating characteristic (ROC) curve, a graph of the false positive and true positive rates obtained as the dec...
متن کاملA general class of hierarchical ordinal regression models with applications to correlated ROC analysis
The authors discuss a general class of hierarchical ordinal regression models that includes both location and scale parameters, allows link functions to be selected adaptively as finite mixtures of normal cumulative distribution functions, and incorporates flexible correlation structures for the latent scale variables. Exploiting the well known correspondence between ordinal regression models a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006